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Spectra of graphs constructed by various new graph operations I

New graph operations in my thesis

@ (Hi, Hz)-merged subdivision graph of a graph
@ M-join of graphs
@ M-generalized corona of graphs constrained by vertex subsets

e (M, M)-corona-join of graphs constrained by vertex subsets
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@ Joxm - The n x m matrix in which all the entries are 1

@ o(M) - The spectrum of a matrix M

@ Rpxm(s) := {[mjj] € Maxm(C)| Zm,-j =sfori=1,2,... n}
j=1

@ Chxm(c) == {[mj] € I\/Inxm((C)’ Zm,-j =cforj=1,2,...,m}
i=1
® RCpxm(s,¢) :=Rnxm(s) N Crxm(c).
e AU B, AN B, A+ B denote the union, intersection, sum of sets
(multi-sets) A and B

@ kA Sum of a multi-set A with itself k times

@ AC B A'is a subset (multi-subset) of B

@ A\ B The difference of a set (multi-set) A from B
o |A| Cardinality of the set (multi-set) A
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Spectra of some partitioned matrices

Related results in literature

The following result was proved by Goddard in 1995.

Proposition 1.1.

([1]) Let A € Muxn(C) and B € Mmxm(C). If there exists a matrix P € Mpyxm(C) such that
rank(P) = r and AP = PB, then A and B have at least r common eigenvalues. Moreover, if
m > n and r = n, then o(B) D o(A),; if m < n and r = m, then o(B) C o(A).

Haynsworth proved the following result in 1960.

Theorem 1.1.
([3, Theorem 2]) Let

A A - Aw By B - Bk
Ay Axn - Ax By B - By

A= | . . . and B=| . . A (1.1)
Al Are o Ak Bii Bike -+ Bk

where Ajj € M,,,.X,,j((C) and Bjj € Mm;xmj(C) fori,j=1,2,...,k. Let Xj € M,,jxmj((C) such
that rank(X;) =r for j =1,2,... k. If AyX; = X;Bj; fori,j =1,2,...,k, then A and B have
at least kr common eigenvalues. Moreover, if r = m; for i =1,2,...,k, then o(B) C o(A).

— = vyt
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Throughout this presentation, unless we mentioned otherwise, we assume the following.

[Air Az -+ Aw
An Axn - Ax
(1) A=| . S . | where Aj € Mpxn;(C) for i,j=1,2,....k
LAkt Ak - A
(2) B={s1,5,..-,5} C{1,2,...,k}and sy < s < -+ < s,
_35151 35152 e BS15t
85251 35252 e 525t ..
3) B=| . . ) .| where Bj € My, xm;(C) for i,j € f3.
_Bs.tsl BS.tSZ . BS.tSt
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Theorem 1.2.

St
Let X; € My, xm;(C) for j € B, and let r = rank(X;). If

Jj=s1
A,‘j)(j _ X,'B,‘j for I',_] € /3;' (1.2)
0 fori € B%;j € B,

then A and B have at least r common eigenvalues. Moreover, if rank(X;) = m; (provided
m; < n;) for i € B, then o(B) C o(A).

proof outline

Take
Py P2 ... Pit
Py Pxn ... P
P = . . . R
Paa Pk ... Pu
X; if i =s;;
where Pj; = i =

0  otherwise,
fori=1,2,...,k; j=1,2,...,t. in Proposition 1.1.
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Theorem 1.3.

If there exists a sequence S = (Xs;, Xs,, ..., Xs,) of non-zero vectors X; € C" such that
i X forij € p;
Ay = 2% i€ B (13)
0 fori e ) € B,

with aj € C for i,j € 8, then o(A) D o(Es), where

ds1sp  dsisy 0 Asyst

Asys;  dsysy T Asyst
Es =

astsl astsz Tt astst

Remark 1.1.

(1) Each X; is an eigenvector of Aj; corresponding to the eigenvalue aj; for j € .

(2) The matrix Es mentioned in Theorem 1.3 depends on the sequence S. In this
case, we say that Es is the matrix corresponding to the sequence S.
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Next we study under which constraints the sum of the spectra of the matrices
corresponding to some sequences is contained in the spectrum of A.

Proposition 1.2

Letsi,t; € {1,2,... k} fori=1,2,. randj—l 2,...,p. Let X\ € C™ for
h=1,2,... k; q—l 2, and let S, = (xsl X Xs(,l)and
S = (th) Xt(22 b ,Xt(: ) be sequences of no-zero vectors, which satisfy (1.3) with a,(jl),
Jec, respectively. If Xs(l.l) and Xt(jz) are linearly independent whenever s; = t; for
i: 1,2,...,randj=1,2,...,p, then
o(A) 2 o(Es;) + o(Es,)-

Moreover, if S1, S, ..., Sq are the sequences of non-zero vectors such that each pair S;,
Sj fori, j=1,2,...,q satisfies the above constraints, then

A) D Zq:g(Es,).
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Proof outline

Let Ps, = [YT YT o Y]]T, where
XM ifj=s;
Yii = _
0 otherwise ,
forj=1,2,...,k;i=1,2,...,
Let Ps, = [;{zg-~ ;] where
x® ifj=t;
Zj = !
0 otherwise ,

for j=1,2,... kii=1,2....p
Then rank(Q) = r + p, where Q = [Ps, Ps,] and

ae=e[§ 4]
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Corollary 1.1.

Let Ajj be a square matrix of order n for i,j € B. Let X(l), X(2), ... ,X(’) be linearly
independent eigenvectors of Aj; corresponding to the eigenvalues at) a,(f), ey al(-j'),

iy )
respectively for i,j € 3. Then we have the following.
(1) If AzX™ =0 for i € B<; j € B, then

=

o(A) 2 D o(En),

h=1

where (h) (h) (h)

h h h
ds;s;  ds;s, 1t dsis

h h h
ag231 agzzz e 3222t

E, =

(h) (h) (h)

sty Asts) T Ass

forh=1,2,...,r.
(2) If Aj = CijJnxn, where c; € C for i € 5; j € B and X\") is orthogonal to Jnx1 for

h=1,2,...,r, then o(A) 2 Za(Eh), where Ej, is as mentioned in part (1).
h=1

—— == — ~
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@ Forh=1,2,...,r let Sy = (Xs(lh),X5(2h), e ,Xs(th)), where
Xs,(ih) = X" for j =1,2,...,t. Since each pair S;, S; satisfies the
constraints of Proposition 1.2 for i,j =1,2,...,r; i # j, the result
follows. Here we denote Es, by Ej.

@ Since X" is orthogonal to Jpx1 for each h=1,2,...,r, A,-J-X(h) =0
for i € 5¢; j € 5. So, the result follows by using part (1) of this
corollary.
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1 4 2 2
Example 1 Consider the matrix M = 64 g _22 [21
-6 3 4 =2

M = {All ﬁu} where
22

A2
=y o= 3
2 4]

Aoy = [_06 3] and Ay — [_4 ).

Here X = [_11] is an eigenvector of Ay, corresponding to the eigenvalue

—6, which is orthogonal to J>«1.
So, by using Corollary 1.1 (2), —6 is an eigenvalue of M.
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Corollary 1.2.

([3, Corollary 2]) If A fori,j =1,2,...,k are real symmetric matrices of order n such that
they commutes with each other, then

n

a(A) =) o(En),

h=1
where ORI o)
a1 d1p a%k
B0 am o Ay
Eh = . )
R B
k1 k2 T Fkk
with af.jh) is an eigenvalue of Aj; corresponding to the same eigenvector X for each

ihj=1,2,...,k; h=1,2,...,n.

-
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Partitioned matrices with generalized stochastic matrices

as its blocks

@ A matrix M is said to be generalized stochastic, if M € Rpxm(r) for some r € C.
@ The matrix A is said to be block-stochastic matrix, if each Aj; € R,,,x,,j(a,j) for

i,j=1,2,..., k. We denote the matrix 4 := [aj] for i,j =1,2,...,k )

Corollary 1.3.

If Ajj € R xn;(aj) fori,j € B and Aj = Rn;xn;(0) for i € B¢ and j € B, then a(A) 2 a(dja g)),
where

ds; sy ds; sy .. Asysy

dsys;  dsys;  --- dsys;
Oa,p) = :

As,s;  As;sy - Asys

M

Proof.

Let Xj = Jp;x1 for i € B and let S = (X5, Xs,,...,Xs,). Then S, A and aj; satisfies (1.3). So
the result follows from Theorem 1.3. O

— = = = = aWo
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Example 2

1 4 1 -1
Consider the matrix M = _04 g :g g

-6 3 4 -1

. A1 Alz}
We can partition M as [A21 Ao |’
1 4 1 -1

where Ay = {_4 3}, A1p = {_2 2 }

Aol = [—06 g] and Ay = [_42 _51]

Notice that Ais € R2><2(0) and Ay = R2X2(3).
So, taking 8 = {2} in Corollary 1.3, we can obtain that 3 is an eigenvalue
of M.
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The following result, which was proved by Haynsworth [2] in 1959.

Corollary 1.4.

2, Theorem 2]) If A is block-stochastic with A; = a(U) ,h=1,2,..., n;
ij hq
q=1,2,...,n;;i,j=1,2,...,k, then

o(A) = (da) + o(C),

where
Cu Go - Cu
C1 Cn - Cx
C=| . ) . . (1.4)
C.kl C.kQ - C:kk

with C,-j:[ag)—aﬂ)] forh=2,3,...,ni;,q=2,3,...,nj;i,j =1,2,... k. If either n;

or nj is 1, then the block Cj is omitted, so i and j do not necessarily take all values of
1,2,... k.

A
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Corollary 1.5.

Let A be a block-stochastic matrix for i = 1,2,..., k and let

(i) (i) (i)

i1 Inix 1 P12 Iy x ng T Pl Iy x Njp;
(i) (i) (i)

P21 Iniz xnjp P22 Jnia Xnp Tt Pap nip x Njp:

_ 3

Aj = . . , : ,

(i) (i) (i)

ppilJ"’ip,‘ X nj1 pp,'ZJ"ip[ Xnp T PpipInip Xnjp,

where pi?) € C for h=1,2,...,pi; q=1,2,...,p;; i,j = 1,2,... ki i # . Then

o(A) = o(8a) + Y [o(Ai) \ o(da;)] -

li=ll

M
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Proof.

Since Aj; is block stochastic, by Corollary 1.4,
a(Air) = o(6a;) + o (CD), (15)

where C() can be obtained from (1.4) for i =1,2,..., k.
From (1.5), we can obtain that

o(C) = o(Ai) \ o(3a;)- (1.6)
Since A is block stochastic, again by using Corollary 1.4, we obtain that
a(A) = o(0a) + o(C), (1.7)

where C is as given in (1.4) with

fori,j=1,2,..., k. So,
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Corollary 1.6.

Let A € Rp;xn;(a;i) fori=1,2,... k. Let

A1 p12Jn1><n2 cco plle‘Iank
P21dny x my 2 oo p2rIny xny
A= . . . . ,
pPkidnexny  pkadnixn, - Ak

where pjj € C fori,j =1,2,...,k; i # j. Then

k
a(A) = o(da) + D _ lo(A) \ {ai}],

i=1
where
ai p2m2 ... P1kNk
p21m a2 <o P2Khk
op = . . .
PkINL Pk ... ak
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Corollary 1.7.

Let M € RCoxm(p1, p2) and By = bjjl, + b Jn + b,'-*-'MMT, Pis = pisdaxm+ pisM, Qn =
Grjdmxn + qhiMT and Chs = Chslm + ChsJm + crsM' M, where
bij, blj, b, Pis, Plss Ghis Qhj» Chss Ches Che ER for i, j =1,2,... ki; hys=1,2,... ka. Let
B P
A= [Q C] ; (1.8)
where
Bii Bz -+ By Pu P - P
BZl B22 et szl P21 P22 ceo P2k2
B = . . o 5 [P = . . . )
Bui Biz -+ Buk Pui Pz - Pa,
Qu Qr - Qi Ci Go - Gy
Q1 Q2 - G G G o G
Q=1 . . B cC=| . . .
Ql‘(gl Q/'QZ te ka k1 Cl‘(zl C/;22 te Ck2 ko )
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Let r — rank(M)+1 if pp =0 or p» =0;
= | rank(M) otherwise.
Then
a(A) = a(3a) + (n—r)a(B') + (m—r)o(C’) + Z o(Ex,), (1.9)
0# € (MMT)\{p1p2}
B’ = |[bj]fori,j=1,2,... ki
c = [cif] for i,j =1,2,..., ka;
and
_ [Eie AcExe
B = |:E3t E4t ] ’
with
Eie = [bj + Aebf], Eoe = [ps], Esr = [ail, Eae = [chs + Accpils
for all t such that 0 # A\¢ € o(MMT)\ {p1p2}; i,j =1,2,...,ki; hys =1,2,... ko.
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Example 3
Consider the matrix

r 3 -2 3 1 -2 -1 2 7
-2 11 -5 -3 6 3 -6
3 -5 6 2 —4 -2 4
A= 2 2 2 2 -3 -2 1
2 2 2 -3 5 1 -5
2 2 2 -2 1 2 =3
L 2 2 2 1 -5 -3 5 |

1 -2 -1 2
TakingM=]-3 6 3 -6
2 —4 -2 4

, A can be viewed as

o &
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where Byy = I3+ Jo + 75 MMT, Pyy = M, Qi1 = 2J4x3,
Cii =2l — Jy + ﬁMTM. Taking p1 = 0 and rank(M) =1, r =2 in
Corollary 1.7, we get

o(A) = o(0a) + o(Ex,) + o(B') + 20(C"),

where d, = [g _02}, E, = [105 11420}, B =[1] and C' = [2].
Thus o(A) = {=2,1,2,2,4,12,15}.
Example 4 Consider the matrix

3 -2 3 1 —2 -1 2 |0 0]
2 11 -5 | -3 6 3 -6 |0 0

3 -5 6 2 —4 -2 4 |0 0

2 2 2 2 3 —2 1 [—2 =2
A=|2 2 2 |3 5 1 -5 |-2 =2
2 2 2 |2 1 2 -3 |[-=2 -2

2 2 2 1 -5 -3 5 |—2 -2

—1T -1 -T [0 0 0 0 - 2
| -1 -1 -1 |0 0 0 0|2 -1]

M. GAYATHRI (KAHE) Spectra of some partitioned matrices



Then A can be viewed as
1 1
A(lll) Aglg 0
A= Agl) Ag2) —2J4><2 )
_J2><3 0 A(121)

where A%), A(112) Agll) and Ag) are the blocks of A as mentioned above.
Then by using Corollary 1.5, we have

o(A) = a(da) + [0(M11) \ 0 (Omm,)] + [0(M22) \ 0(9m,)]

4 0 O (1) A

where 5A == |:6 -2 4-], M11 = [A(l) A(l)] M22 A(z)
-3 0 1

Notice that o(6a) = {4, 2,1}, o(Max2) = {1, -3}, 6(M2) = [1] and by

using Example 3, o(Mi1) \ o(dmy,) = {1,2,2,12,15}.

Thus we have 0(A) = {4,-2,1,1,2,2,12,15, —3}.
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Eigenvectors of some partitioned matrices

Let x be an eigenvalue of Es with an eigenvector Y = [c;; ¢;, ... Cq] T, Then we
have
EsY = xY.

From this, we obtain

Cs) Ais, + Cs, disy + -+ Cs dis, = Cs; X (110)
for each i € 3. Let
Z=[n 2z - Zk]T,
where Z; = ciXi !f I €5
0 if i € 5°.

Then by using (1.10) and (1.3), it can be verified that
AZ = xZ.

Therefore, Z is an eigenvector of A corresponding to the eigenvalue x.
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Construction of eigenvectors of A: We proceed to construct the eigenvectors of A
corresponding to the eigenvalues mentioned in Theorem 1.3.
Consider the following matrix equation:

A A - Aul [4 V4]
An Axn - Ax| |22 Z>
. ) . . l=x| 0,
A Ak - Al L4k Z
where
cXi ifi=si,%,...,5_1;
Zi=< X, if i =s¢;
0 otherwise,
with ¢; € C for i = 1,2,..., k. Then we have the following system of equations:
Cs; (X - a5151) — Csa55, — 0 — Cs,_1 55, — ds;s, = 0
—Cs;3sp5; + Csz(x - 35252) — = Gy 4355, — 355, = 0
(1.11)
—Cs1@s;_151 — CspAs_ysp — "+ Cst—l(X - an71Sr71) — dsi_ist — 0
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— Cs1ssy — Cydspsy — *** — Cs_qAsps;_y T (X - astst) = 0 (1'12)

Notice that, (1.11) can be written as

PC = X,
where
X — g5 —dsis) e —asise_1
—ass X —=ags " —Asysi 1
P = 9
—as_15 —as_1s o X T asi sy
C = [a & ]’
X = [aslst Asysy  +e- asrflst:l ! .
Then
C=P'X. (1.13)
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Let P; be the co-factor of the (/,j)-th entry of P. Then by (1.13), for each

j=51,%,...,S—1, we have,
1 t
& = [p] 2 3P (1.14)
i=1
Substituting the values of ¢, ¢s), ..., Gs,_; in (1.12), we get
|Xlt - ES‘ =0.

It follows that, [Z1 Z: Z " is an eigenvector of A corresponding to the
eigenvalue x of Es , where ¢, is given in (1.14) for j=1,2,...,t — 1. O
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